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J .  PHYS.  A ( P R O C .  PHYS.  SOC.) ,  1968 ,  S E R .  2 ,  V O L .  1. P R I N T E D  I N  G R E A T  B R I T A I N  

Vacuum polarization and low-energy scattering 

M. W. KERMODET 
Department of Theoretical Physics, University of Liverpool 
MS. received 12tJz July 1967, in revised form 9th October 1967 

Abstract. The effects of vacuum polarization on the S-wave scattering of protons 
by protons and alpha particles by alpha particles are investigated. The  calculations 
are exact. The  inclusion of vacuum polarization gives a slightly improved effective 
range fit to the p-p scattering data. The  width of the ground state of beryllium is 
calculated from the GC-GC scattering data. The  value of 6.14+0.04 ev compares 
favourably with the experimental value of 6.8 & 1 -7 ev. 

1. Introduction 
Experiments for studying the elastic scattering of protons by protons and alpha particles 

by alpha particles have now been performed over a wide range of energies, and the measured 
differential cross sections analysed in terms of ‘nuclear’ phase shifts (Lauritsen and 
Ajzenberg-Selove 1966 (GC-X experiments), HulthCn and Sugawara 1957, Noyes 1964 (p-p 
experiments)). Since both protons and alpha particles are charged, the ‘nuclear’ phase 
shift is the additional phase shift due to the ‘nuclear’ potential embedded in the Coulomb 
potential. The  differential cross section for the scattering of similar particles in the centre- 
of-mass system is given by 

where the sign s is positive for alpha particles and negative for protons. The  scattering 
amplitudef(0) can be written 

wheref,(0) is the scattering amplitude for the Coulomb potential. It is given by 
f ( 0 )  = fc(4 + f N ( O >  

77 
2k 

fc(0) = - sin2 $0 exp(- iq log(sin2 $0) + 2iuo] 
where 

crL = arg(L + 1 + iq) 
yI=-- _ -  

fiv 2k 
Z,Z2e2 b 

and K is the relative momentum of the two particles. f,(f?) is the additional scattering 
amplitude due to the ‘nuclear’ potential and can be written 

f,(f?) = ( 2 i k ) - l  2 ( 2 L  + 1) exp(2ia,){exp(2iSL) - l)P,(cos 0) 
L 

where 6, is the ‘nuclear’ phase shift and P,(cos 0) is the Legendre polynomial. For the 
proton case allowance must also be made for the intrinsic spin. The  calculation of the phase 
shifts 6, from the differential cross sections is by no means a trivial one, and often does not 
give a unique set. The  details of this calculation are given in the literature (e.g. Tombrello 
and Senhouse 1963). 

T h e  variation of 6, with energy shows quite clearly in both cases that the nuclear 
potential is repulsive at short distances. For p-p elastic scattering the singlet S-wave phase 
shift becomes negative at high incident energies (about 150 Afev in the centre-of-mass 

p Now at Department of Physics, McMaster University, Hamilton, Ontario, Canada. 
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Vacuum polarixation and low-energy scattering 237 

system) (Preston 1962, p. 102). If this repulsion is due to a hard core, as opposed to a 
strong but finite potential, the radius of the hard core is about 0.4 fm, although its precise 
value is a little uncertain. Using a phenomenological singlet potential, Hamada and 
Johnston (1962) obtained a hard core radius of 0.343 fm. In  recent work by Heller et al. 
(1964) this value was modified to 0.48 fm (see also Noyes 1965). For c(-x scattering the 
repulsion is more marked. I n  addition to the hard core in the nucleon-nucleon interaction, 
there is the quantal repulsion resulting from the fact that the constituent nucleons of the 
alpha particles obey Fermi statistics. The  combined repulsion can be considered as arising 
from a hard core at a radius of about 1.7 fm. Its inclusion greatly facilitates the application 
of effective-range theory (Kermode 1967). 

From the phase shift 6, we can define the function 

where Ff.(q, p)  (GL(7, p))  is the regular (irregular) Coulomb wave function, a, is the hard 
core radius, p = Kr, and the prime means differentiation with respect to p. If 6, results 
from a short-range interaction, theny,(a,) is a slowly varying function of energy and can be 
written (Kermode 1965, 1967) 

Equation (2), the effective-range formula, also holds for a non-local interaction, provided 
that the kernel is symmetrical. In  this paper we shall consider the case of S-wave scattering 
only. For no hard core, equation (2) reproduces the well-known formula of Jackson and 
Blatt (1950), where 

and 

y0(O) = b( 7T cot 
exp(2q)  - 1 (3) 

I n  4 2 we assume that equation (2) is valid, i.e. the interactions have a short range, and 
use the experimental phase shifts to calculate the coefficients Bo,i  ( i  = 0, 1, 2). I n  4 3 we 
introduce the vacuum polarization potential. This potential has a long range. For the 
remainder of the paper we investigate the effects arising from the inclusion of this potential 
in the scattering problem. 

2. Effective-range analysis (i) : short-range forces 
The p-p data were first analysed under the assumption that only short-range forces 

were responsible for the experimentally determined ‘nuclear’ phase shifts 6,. Since the 
phase shifts tabulated by Noyes (1964) were more accurate than those tabulated by HulthCn 
and Sugawara (1957), it was decided to analyse each set of data separately. The  latter paper, 
on the other hand, contained a larger number of experimental results. A comparison of the 
two analyses shows the extent to which the quality and quantity of these experimental 
results balance. 

Of the 35 experimental values for 6, given in the review article by HulthCn and Sugawara, 
five were rejected because of the uncertainty in energy. In  addition, the experiment at 
2 -1  MeV (c.m.) was not considered because the phase shift 6, had not been included in the 
analysis of the differential cross section. The  remaining 29 points were contained in the 
centre-of-mass energy region 0.1-4.865 MeV. From each of the 29 experimental phase 
shifts, y o  (0.48) was calculated on the IBM 7040 computer at Liverpool University. T h e  
Coulomb wave functions were calculated by the series expansion method described by 
Froberg (1955). T h e  errors in the experimental data were taken as given in the literature. 
This was in contrast with the analysis by HulthCn and Sugawara in which equal weight 
was assigned to all the experimental data. The  coefficients Bo,i (i = 0, 1 ,2)  were chosen 

3.4 
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to minimize the function 
n 

S2 = a-1 2 ~ ~ - ~ ( y , ~ - B ~ , ~ - B ~ , ~ k ~ ~ - ~ ~ , ~ k ~ ~ ) ~ .  (4) 
i = l  

I n  equation (4), oi is the standard deviation associated with y o ,  and the summation extends 
to all the experimental points. The  results of this analysis, p-p ( l ) ,  are given in table 1. 

A separate effective-range analysis was performed using the five phase shifts tabulated 
by Noyes (1964). The  centre-of-mass energy range for this case extended from 0.191 25 Mev 
to 1.5185 MeV. The  resulting coefficients, labelled p-p (Z), are also given in table 1. 

A similar analysis of the t(--t( S-wave data up to 12 MeV (cam.) has already been reported 
(Kermode 1967). In  this analysis the y o  (1.7) curve was constrained to pass through the 
resonance energy E,, the ground state of beryllium. The  value of E, has been given 
variously as 92.12 k 0.05 kev (Bennet al. 1966) and 94.5 i 0.5 kev (Lauritsen and Ajzenberg- 
Selove 1966). A separate analysis was performed for each of these values. The  results are 
given in table 1. 

Table 1. Coefficients Bo,i obtained from the experimental phase shifts 

No. of a. Bo .* B0.l BO2 
Experiment points (fm) (fm -I) (fm) (fm3) SZ 

P-P (1) 29 0.48 0,026845 0.89182 -1.1028 1 *90 
P-P (2) 5 0.48 0.026989 0.84374 0.27392 0.43 
Q-% (1) 37 1.7 - 0,45586 0,79680 0.00924 0.42 
%--x (2) 37 1 e7 -0.45571 0.79569 0.01022 0.41 

Vacuum polarization effects are neglected. 

I n  this table the results for scattering are x-x  (1) or x-x (2), depending on whether 
we take the resonance at 92.12 kev or 94.5 kev. Using the coefficients given in table 1, 
the width of the ground state of beryllium was calculated from the formula (Kermode 1967) 

where x, = kG,’/G,. T h e  width was found to be 6.14 F 0.04 ev (for E, = 92.12 5 0-05 kev) 
or 7.7 & 0.4 ev (for E, = 94-5 5 0.5 kev). The  errors in these values arose mainly from the 
uncertainty in the position of the resonance. The  effect of the errors in the coefficients 
Bo,i was small ( N 0.01 ev). T h e  width of 6.14 5 0.04 ev compares very favourably with 
the experimental value of 6.8 & 1.7 ev (Benn et al. 1966). 

Equation (5) is valid whether 6, is produced by short-range forces or not. The  advantage 
of the short-range assumption is that equation (2) is also valid. This enables the gradient 
of yo(a,)  at the resonance to be calculated accurately from moderately accurate scattering 
data at higher energies. I n  the following we consider the effect of a particular long-range 
force, i.e. vacuum polarization, in addition to the Coulomb and short-range forces. For 
this case equation (2) is no longer valid and the calculation of dyo/dE becomes more difficult. 

3. Vacuum polarization 
From the theory of quantum electrodynamics it is known that in addition to the 

Coulomb potential between charged particles there are other effects which, although small, 
may be significant for a description of the experimental results (Feynman 1961). The  
largest effect, arising from the diagram shown in figure 1, is that due to vacuum polarization. 
This interaction was first discussed by Uehling (1935) and was later found to contribute 
an important part of the total Lamb shift between the electronic energy levels 2s 2S,,2 
and 2p 2Pl,z in the hydrogen atom (Lamb 1951, Triebwasser et al. 1953). 

The  effects of vacuum polarization in proton-proton scattering have been considered 
by Foldy and Eriksen (1954, 1955), Eriksen et al. (1956), Durand (1957) and Heller (1960). 
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The  change in the function K = b-lyo(0) (equation (3)) resulting from the vacuum 
polarization was calculated by Foldy and Eriksen (1954) using first-order perturbation 
theory. They found that the phase shifts were not sufficiently accurate to confirm the 
presence of vacuum polarization in S-wave scattering. For P waves, however, the calcula- 
tions of Eriksen et al. and Durand showed that approximately half of the observed phase 

Figure 1. Feynman diagram for vacuum polarization. 

shift at an energy in the range 2-5 MeV (lab.) was due to vacuum polarization. In the 
paper by Heller (1960) the effective-range formula for a short-range potential in a combined 
Coulomb and vacuum polarization potential was derived. The  resulting formula is rather 
complicated. 

Both of these approaches have been incorporated in the present work. There are, 
however, two differences in the calculations. First, it is assumed that there is a hard core 
in the nuclear potential, in a similar manner to the previous analysis without vacuum 
polarization. Secondly, the change in the function yo(a,)  is calculated exactly and not by 
first-order perturbation theory. Calculations have been made for both p-p and CI-CI 

scattering since these show different behaviour. The  reason for this is that the nuclear 
phase shifts for p-p scattering are positive for small energies, whereas for a-x scattering 
they are negative for energies above the resonance (i.e. negative with respect to 1SOO). T h e  
phase shift due to the vacuum polarization potential is negative for both cases. Hence 
deviations from pure Mott scattering due to the nuclear potential are diminished in the 
proton case, but enhanced in the alpha case by the inclusion of the vacuum polarization 
effect. 

Using the integral form of the Uehling potential given by Schwinger (1949), the com- 
bined Coulomb and vacuum polarization potential may be written 

where 

and 

b 
V,(Y) = - (1 +AI(Y)) fm-2 

Y 

( 2 ~ ) ~ ~  = ii/2mc = 193.1 fm 

X = 2a/3n = 1.549 x 

The limiting forms of I(?) are 

I(Y) = -0.5772 ... - ; - ~ O ~ ( K Y ) + ~ ( ~ K Y ) ;  2KY < 1 

2KY s 1 

The integral (7) for a given r was evaluated numerically by the method outlined in the 
appendix. This method, which is extremely quick (21 50 ms on the IBM 7040), also gives 
the value of d I ( r ) / d ~ .  

Following Heller, we call the combined Coulomb and vacuum polarization potential 
the electric potential and the solutions of the Schrodinger equation the electric wave 
functions. The regular and irregular electric wave functions, denoted by S L ( r )  and TL(r) 
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respectively, have the asymptotic forms 

where T L  is the additional phase shift due to vacuum polarization. 
For nuclear scattering in the presence of the electric potential the effective-range 

formula (equation (2)) has to be modified on account of the long-range nature of vacuum 
polarization. The  new formula, which can be derived in a similar manner to equation (2) 
(Kermode 1965), is 

where y L E ( a , )  B,,oE + B,,IEk2 + B,,ZEk4 (9) 

and aLE is the nuclear phase shift due to the hard core and the nuclear potential embedded 
in the electric potential. From the asymptotic wave functions it follows that 

6 ,  = 6 L E + 7 L .  (11) 
If we consider S waves, taking the limit as a ,  tends to zero and performing any necessary 

subtraction of infinite terms (Kermode 1967), equation (9) should reproduce Heller’s result. 

4. Riccati equation 
From the experimental data for p-p and K-K scattering, we wish to calculate the function 

y o E ( a , )  and hence the coefficients Bo,? (i = 0, 1,2). For a direct calculation of y o E ( a , )  
one needs the vacuum polarization phase shift T,, the electric wave functions and their 
derivatives. Unlike the case of the Coulomb wave functions there is no known series expan- 
sion for the electric functions. Furthermore, the phase shifts given in the literature are the 
6, and not the aOE. T o  circumvent these difficulties the yoE(a,) were calculated from the 

y o ( a o )  using the Riccati equation (Piaggio 1956, p. 201). 
The Riccati equation can be obtained directly from the Schrodinger equation. Let 

uL(y) be a solution of the equation 

U L ( Y )  = 0 
dr2 L(L Y2 + 

where V(Y) is any potential, expressed in units of (length)-2. The  logarithmic derivative 
of UT.(Y) 

satisfies the equation 
L(L + 1) 

-- - - - k2+ V(T)+ d Y L ( 4  
- Y,Z(r). 

dr Y 2  

Equation (13) is a special example of the Riccati equation 

dY 
dr 
_ -  - P(Y) + Q ( Y )  Y + R ( y )  Y 2 .  

In  the present case V(Y) is either the Coulomb potential or the electric potential. Hence, 
for S-wave scattering, 
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and 

--- dyoE(r) - - - k2 + VE(Y) - {yoE(r)}2 
dr (15) 

where y0(r )  and yoE(r) are defined by equations (1) and (10) for arbitrary Y. At a large 
distance R we have, from equations (l), (8), (10) and ( l l ) ,  that 

Yo(Q = YoE(R). (16) 
Hence, in principle, the problem is straightforward. From yo(ao)  we can calculate 

y o ( R )  using equation (14), and from yoE(R)  (=  yo(R) )  we can calculate yoE(ao) by inte- 
grating equation (15). The  coefficients Bo,? (i = 0, 1, 2) are then obtained from a least- 
squares fit to these experimental values of yoE(ao). The low-energy behaviour of yoE(ao) 
can thus be interpolated and extrapolated. From a reversal of the above procedure, the 
logarithmic derivative yo(ao) can also be extrapolated to lower energies. 

I n  practice, the numerical integration of the Riccati equation is complicated by the 
presence of poles in y0(r ) ,  which necessitate the use of suitable transformations. The  first 
transformation considered was 

where f 1 ( r )  satisfies the differential equation 

f1(r) is monotonic decreasing since 

Y dv 

For low-energy scattering a substantial part of the domain of integration for the Riccati 
equation arises from the region Y < r‘ where Y‘ is the classical turning point, or transition 
line, i.e. k 2  = V(Y’) .  As a result, a better transformation than (17) in this region would be 
one which involves the hyperbolic function rather than the circular one. The  hyperbolic 
function, however, is not suitable for Y > Y’, on account of the poles of y0(r).  The  trans- 
formation 

{k2 - V ( Y ) ) l / Z  cot[{k2 - V(Y))l’2f2(Y)] 

{V(Y) - k y  COt[{V(Y) - h”)”2f2(Y)] 

k2 > V(Y) 

k2 < V(Y) 
= ( f 2 - V I  k2 = V(Y) (18) 

gives effect to these considerations and was found to be an improvement on (17). The  
potential term in equation (18) is Coulomb for y0(r )  and electric for yoE(r). The  function 
f z ( r )  is continuous across the transition line and obeys the differential equation 

1 dV(Y)  
- 1 + -___ {kZ- V(y))-l{fz(y)-g(r))  d f d y )  -__ - 

dr 2 dr 
where 

sin[2{k2 - V ( Y ) } ~ / ~ . ~ ~ ( Y ) ]  sinh[2{ V(Y) - kz}1/2f2(~.)] 
- - 

2{k2 - V ( Y ) ) 1 / 2  2{ V(r)  - k 2 } 1 / 2  
g(y> = 

It should be noted that the transformation (18) is applicable only in regions Y where 

yo2(Y) > V ( r ) - k 2  (20) 
on account of the branch cut of the function arccoth (2) from - 1 6 x 6 1. 

Before presenting the results of the exact calculations using these transformations, we 
shall consider further the Riccati equation. In  particular, we shall investigate the low-energy 
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behaviour of yo(ao). This function depends on a,, the combined nuclear plus vacuum 
polarization phase shifts in the presence of the Coulomb field (equation (11)). So far we 
have considered the effect of the nuclear potential embedded in the Coulomb and vacuum 
polarization potentials. We now consider the effect of the vacuum polarization potential 
embedded in the Coulomb and nuclear potentials. The  final result, i.e. the energy behaviour 
of yo(ao) is, of course, the same. 

Let us consider the scattering by a short-range nuclear potential in the presence of 
the Coulomb field only. The  effective-range formula is given by 

where tlL is the nuclear phase shift appropriate to this particular situation. From this 
value ofjj,(a,), we wish to calculate the value ofy,(a,) arising from the vacuum polarization. 
Writing 

sin t lL + F,' cos t lL)  -xL(Y)(GL' cos tl L - F L '  sin ""'] 
jjL(Y) = k ( ( G , '  (22) (GL sin tl, + FL cos czI,) - xL(Y)(GL cos t lL - FL sin t lL)  

with the boundary condition xL(aL) = 0, we find from the Riccati equation that 

d X L ( 4  V"P(Y) 
-= - {(GL sin tlL + F L  cos E ~ )  - xL(Y)(GL cos x L -  F, sin txL))' (23) dr k 

where VVp(r) = V,(Y) - b / r  is the vacuum polarization potential. 
shift is given by 

We note that E ,  is not equal to aLE. From equations (1) and (24) we have 

~ Y L ( ~ J  y L ( a L ) - J L ( a L )  

The experimental phase 

6, = t x L  - arctan{%,( a)). (24) 

- kxd  a) - 
[(G,sina,+F,cos ~L){(G,sintlL+FLcos cz,)-x,( a ) ( G , c o s ~ , - F , s i n ~ ( . ~ ) ) ] ~ ~ '  

(25 ) 
From equations (21), (23) and (25) we could calculate the function 8yL(aL) exactly provided 
the coefficients Bo,i (i = 0, 1,2) were known. A good approximation to these coefficients 
can be obtained by using the numbers given in table 1. For the alpha case small adjustments 
in these numbers are necessary in order to produce the observed resonance at the correct 
energy. This is similar to the approach by Foldy and Eriksen. I n  practice, there is the 
difficulty of the numerical calculation of the irregular Coulomb wave function over a large 
range of r. This difficulty is avoided by the method of $ 5 .  

A more drastic approximation to equation (25) can be made if the vacuum polarization 
potential is treated as a perturbation. The perturbation theory result is obtained by neglect- 
ing the term xL(r) on the right-hand side of equation (23) and the term xL( CO) in the de- 
nominator of equation (25) to give 

Equation (26) was used by Foldy and Eriksen in their analysis of the proton data. 

I n  this perturbation approach the approximation 
Since the vacuum polarization potential is repulsive, 8yL(aL) is positive. 

I(GLsinsr,+F,~ostlL)~,l 9 I~L(~~)(G,costlL-FLsintl,)a,l 

is made. At low energies, however, the vacuum polarization potential provides a larger 
contribution to the phase shift 6, than the nuclear potential, and at very low energies we 



Vacuum polarization and low-energy scattering 243 

can make the opposite approximation 

I(GL sin a,+ F ,  cos ctJaLI < IxL( OO)(GL cos a L -  F ,  sin 

S Y ~ ~ L )  

(27) 
Equation (25) then becomes 

k 
((GL sin aL + FL cos x L ) (  GL cos aL - FL sin a,)},, 

- 

k cot aL  
N -- - 

( G I P ,  + FL cot KL)>U, 

GL UL 

=A(%) -A( GI)‘ + FL’ cot 

so that 

The  ranges of validity of these two approximations can be judged from the exact 
calculations presented in the next section. 

5. Effective-range analysis (ii) : vacuum polarization and short-range forces 
5.1. p-p scattering 

From each of the 34 values of ~ ~ ( 0 . 4 8 )  used in the previous analysis ( 4  2), f,(0*48) 
was calculated using the inverse of equation (17). The  differential equation for fl(r) was 
integrated numerically, by the Runge-Kutta method, on the English Electric KDF9 
computer at Liverpool University. At a large distance R equation (16) was used to give 

The  integration was then performed in the reverse direction with the Coulomb potential 
replaced by the electric potential. For an accuracy of five figures in the value of ~ ~ ~ ( 0 . 4 8 )  
it was found that R could be taken as 400 fm (2 CY 2), except for a few low-energy points 
which required a greater matching distance. From a least-squares fit to ~ ~ ~ ( 0 . 4 8 )  the 
coefficients given in table 2 were obtained. 

Table 2. Coefficients Bo,iE obtained from the experimental p-p phase shifts 

No. of Bo,oE Bo.1’ B0.z” S Z  

points (fm-l) (fm) (fm3) 

P-P (1) 29 0.025208 0.93893 - 1.6868 1.79 
P-P (2) 5 0.024997 0,92630 - 1.1055 0.35 

a.  = 0.48 fm. 

If we compare the values of S2 in tables 1 and 2, it is seen that the analyses which 
included vacuum polarization gave a slightly improved fit. Furthermore, the coefficient 

for the second set of data is negative, and is therefore of opposite sign to Bo,,  (table 1). 
A similar result for the case of no hard core would mean that the shape parameter is positive. 
However, the calculation of B0,2E, for a,  = 0, is difficult and will not be attempted here. 
Instead we shall estimate the coefficients Bo,i ( a ,  = 0 )  and compare the results with those 
of Noyes (1964). 

We assume that since the vacuum polarization potential is much smaller than the 
Coulomb potential it is a good approximation to take Bo,i = Bo,iE (i = 0,  1, 2) for the 
hard core radius of 0.48 fm. From the numbers given in table 2, the scattering length a, 
the effective range Y, and the shape parameter P were calculated. The  results, together 
with those of Noyes, are given in table 3. The  labels attached to the analyses by Noyes 
are explained in his paper (Noyes 1964). 
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Bo,&o = 0 )  
BC t 0,6984 
SI t 0 
P-P (2) t  -0.4933 
PWDRt -0.5190 
SD t -0.5671 
P-P (1): - 1 ~0948 
CFS t -1.4212 

a (fm) 
-7,8009 
- 7.81 63 
-7.8342 
-7.8259 
- 74284 
-7,8215 
- 743426 

Table 3 

ye (fm) 
2.687 - 
2.746 
2.785 
2,786 
2.794 
2.812 
2.853 

P E 

.Os036 6.88 
0 1.82 
0,023 0.88 
0.024 0.87 
0.026 0.86 
0.049 2.0 
0.0612 5 e67 

All these abbreviations are defined by Noyes (1964). 
$ These numbers were obtained by taking Eo,* = Bo,iE (i = 0,1, 2) for a. = 0.48 fm. 

T o  compare the results we define the quantity E by (n-m)e = x 2  = nS2, where S2 
is given by equation (4) and m is the number of free parameters used to fit the experimental 
data. The  best fit is obtained when E is least. We see that the analysis p-p (2) gave a fit 
to the data comparable with the best fit obtained by Xoyes. The p-p (2) analysis did not 
differ greatly from the SD analysis of Koyes. From table 3 it is also seen that the more 
the shape parameter differed from the value 0.026 the worse the fit became. It is interesting 
to note that the hard core effective-range fit to the p-p (1) data gave a better value for P 
than the BC or CFS models of n'oyes. 

The  boundary condition (BC) used by Koyes was not the same as the boundary condi- 
tion at the hard core used in the present analysis. For S-wave scattering in the absence 
of the Coulomb and vacuum polarization forces, it is possible to choose a distance 7 for 
which the expansion of the logarithmic derivative, k cot (So + kr) ,  does not contain a term 
in k2. Neglecting terms of order k4,  we have k cot (8 ,+k?)  = B, where B is a constant. 
This equation can be written 

k(B + k  tan k i )  
k -  B tan k i  

say. For his BC model Noyes assumed that a similar energy behaviour held for yo(0) 
(equation (3)), i.e. yo(0) = B'(k). It is then difficult to associate the formula with the 
energy dependence of the logarithmic derivative. A slightly better BC fit would probably 
be obtained by considering yo(7) = B. 

The  coefficients for p-p (1) given in table 2 were used to calculate yoE(O*48) and hence 
~ ~ ( 0 . 4 8 ) .  The  results are shown in figures 2 and 3. Above 10 kev the behaviour is similar 

k cot 80 = --___ - - B'(k) 

Figure 2. Proton-proton scattering. Energy dependence of ~ ~ ( 0 . 4 8 )  resulting from 
yoE(0.48) = 0.025 208 +0.938 93 k 2  -1,6868 k4.  
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to that found by Foldy and Eriksen, i.e. the deviation from a quadratic behaviour of the 
function y o ( a o )  due to vacuum polarization is such that y o ( a o )  increases at low energies. 
However, ~ ~ ( 0 4 8 )  becomes infinite at about 9 kev, and at lower energies is asymptotic to 
2;,(0.48), as predicted by equation (28). Perturbation theory, therefore, is definitely 

E,, (kev)  

Figure 3. Proton-proton scattering. Energy dependence of yo(O.48) resulting from 

The broken curve is the function z0(0*48). 
~ o ~ ( O . 4 8 )  = 0.025 208 $0.938 93 k 2  -1,6868 k4. 

unsuitable below about 10 kev. T h e  singular point of ~ ~ ( 0 . 4 8 )  arises because the phase 
shift due to the nuclear attraction is exactly cancelled by that due to vacuum polarization. 
At this energy So is simply the hard core phase shift, i.e. tan So = -(FO/G0)0.48. 
For energies below about 10 kev the experimental phase shift So is predicted to be negative. 

5.2. a-cc scattering 
For the calculation of ~ ~ ~ ( 1 . 7 )  from ~ ~ ( 1 . 7 )  the integration of the Riccati equation was 

performed using the second transformation (equation (18)). It was found that this trans- 
formation could not be applied directly to ~ ~ ( 1 . 7 )  because the inequality (20) was not 
satisfied. The  calculations were performed in two stages. Equation (14) was integrated 
from 1.7 fm to y o ,  where y o  was the smallest distance for which 

yo2(Yo) > 1.01 - - k . ( p ,  9 
The inverse of the transformation (18) was used to calculate f . . (r0) and equation (19) was 
integrated from y o  to the large distance R. From the value off,(R), equation (19), with the 
Coulomb potential replaced by the electric potential, was integrated until the condition 
(I/E(ro’)-Jz2}1/2f2(~o’) 2 2.65 2: arccoth (1.01) was satisfied. Using the value of yoE(ro’) 
calculated from equation (18), the value of ~ ~ ~ ( 1 . 7 )  was obtained from the integration of 
equation (15). This procedure was carried out for each of the 37 experimental points, 
together with their errors, using the IBM 7040 computer at Liverpool University, On 
account of the large range of integration, it was necessary to use the double precision number 
facility of FORTRAN IV. The  coefficients Bo,iE (i = 0, 1,2) obtained from the least-squares 
fit to the ~ ~ ~ ( 1 . 7 )  are given in table 4. 
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x IO-' -4.48, 

c- 
E - 
U - 

Table 4. Coefficients Bo,iE obtained from the 37 experimental 6-01 phase shifts 

E, a0 Bo.oE Bo,iE B o . Z E  S2 

92.12 1.7 -0.45735 0.78750 0.01559 0.45 
94.5 1.7 -0.45719 0.78640 0.01657 0.44 

(W (fm) (fm-l) (fm) (fm3> 

/ 
/ 

0 

Comparing the values of S2 in tables 1 and 4, we see that for the alpha case the fit is 
slightly worse when vacuum polarization is included. This discrepancy is small and is 
probably due to the comparatively large errors in the experimental phase shifts. It would 
be useful if the CA-% phase shifts could be determined to the same accuracy as the p-p phase 
shifts. 

T h e  low-energy behaviour of yo( 1.7) resulting from these coefficients (E, = 94.5 kev) is 
shown in figures 4 and 5 .  We see that the perturbation approach is unsuitable for energies 
below about 94 kev. As the energy decreases, ~ ~ ( 1 . 7 )  approaches the function ~ ~ ( 1 . 7 ) .  

i 

-0,43. 

c v 

0 0.1 0.2 0.3 
E,, (MeV) 

Figure 4. c(-a scattering. E, = 94.5 kev. Energy dependence of y o  (1.7) resulting from 
yoE(1.7) = -0.457 19 $0,786 40 k 2  +Os016 57 k4.  

Figure 5. a-a resulting from 
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From figure 4 it was found that, if the phase shift 6, for CI-CI scattering at energies in 
the region 0.1-0-3 MeV (c.m.) could be measured to an accuracy of 0.2", we should have 
direct evidence for the vacuum polarization effect in scattering. The experimental results 
at 0.2 MeV and 0-3  MeV have errors of 0-5" and 1-0" respectively. 

In  the region of the resonance, ~ ~ ( 1 . 7 )  was found to have the energy dependence 

C 
~ ~ ( 1 . 7 )  = A+BE+- 

E-E '  
The width of the ground state of beryllium was calculated from equations (5) and (29). 
I t  should be remembered that the value of ( ~ ~ ( 1 . 7 ) ) ~ ~  was fixed. This proved to be a 
powerful constraint. Initially, (yo( N)),, was determined to an accuracy of five figures. 
However, as a result of the pole in y0(l.7), it was found necessary to work to an accuracy 
of seven figures for the calculation of yo( 1.7) in the region of the resonance. This accuracy 
was not precluded by the experimental accuracy. The  experimental errors gave rise to 
uncertainties in the coefficients Bo,lE and Bo,2E. For fixed values of Bo,lE and Bo,2E 
within the experimental error, the value of was calculated to give ( ~ ~ ~ ( 1 . 7 ) ) ~ ~  to an 
accuracy of seven figures. For example, the value of in table 4 became - 0.457 346 0 
for E, = 92.12 kev. The  effect of the errors in the coefficients Bo,? on the width was 
small compared with that arising from the error in the location of the resonance. Separate 
calculations were performed for various values of E, and the results were used to determine 
the parameters A,  B, C and E (equation (29)). These are given in table 5 .  

Er 
(kev) 

92.07 
92.12 
92.17 
94.5 

94.5 
(7 figs) 

(5 figs) 

Table 5 
- 

A B c x 107 E r 
(fm-l) (fm-I Mev-I) (fm-l MeV) (4 
- 0.461 29 0.1 3484 0.1468 91.570 6.11 
- 0.461 29 0.1 3484 0.1480 91.618 6.14 
- 0,461 29 0,13486 0.1493 91,665 6.18 
-0,46128 0.13479 0.2212 93.887 7.7 

- 0,461 28 0.1 3474 0.2204 93,869 8.1 

We see from table 5 that the value of I' is the same (to two decimal places) as that 
found from the previous analysis (5 2). I n  fact, the decrease in the value of I? due to the 
inclusion of the vacuum polarization effect was approximately 0.1%. The  results of the 
five-figure analysis are also given in table 5. 
5.3. Computational difJiculties 

Certain computational difficulties were encountered when the calculations were 
extended to very low energies. I t  turned out that these difficulties were not important 
for any of the results given in this paper. If, however, the resonance energy for U-U 
scattering had been 10 kev, say, the calculation of I' would have been impossible by the 
numerical techniques used here. I n  table 6 the results of the numerical calculations for 
E-K scattering at an energy of 10 kev are given. 

Table 6 

YOU *7) Y O E ( l  *7) yo(401.7) yoE(401 *7) 

> 0.02225085 - 0.454, - 0.465 E 
0.02225085 

C 0.02225085 
E 

(1 1 
(2) c - 0.461 36 
(3) -0,45984 + 

(4) -0.465 C 0.02224907 
(5) -0.45984 + C 0,02224907 

> 1 
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T h e  initial and final values of the logarithmic derivative lie at the tail and head of the 
arrow respectively, for example the integration of the Riccati equation for the Coulomb 
potential (C) with the boundary condition y0(r )  = - 0.465 at r = 1.7 fm gave the result 
yo( r )  = 0.022 249 07 at Y = 401.7 fm. 

The  discrepancies in these results arise from the enormity of the irregular wave func- 
tions compared with the regular ones. Let us consider the fourth example in table 6. 
This involves the Coulomb potential only. The  initial value ofy, (1*7), i.e. -0.465, differs 
from the value of xo( 1.7) by 1 yo, so that cot 6, is very large. Hence at a distance of 401.7 fm, 
where the regular and irregular Coulomb wave functions are comparable in magnitude, 
~ ~ ( 4 0 1 . 7 )  is equal to (kFo’ /F0)40~ ,7  plus a very small correction. The rounding-off error 
in the value ofy,(401*7) is such that the value of cot a,, although still very large, is reduced 
by several orders of magnitude, and consequently the value of ~ ~ ( 1 . 7 )  resulting from the 
inward integration is equal to ~ ~ ( 1 . 7 )  plus a very small correction. The  value of ~ ~ ( 1 . 7 )  
obtained directly from the Coulomb wave functions ( 4  2) was - 0,459 84. From a similar 
argument for the integration involving the electric potential, we can conclude that the 
value of (kTo’/To)1,7 at 10 kev is -0.461 36. 

5.4. The radius of the hard core 
The  results given in this paper are those for a fixed value of the hard core iradius, i.e. 

0.48 fm for the proton case and 1.7 fm for the alpha case. The  effect of small changes in 
these values was investigated. It was found that a small variation in a, could be compen- 
sated by small changes in the coefficients Bo,iE (cf. Kermode 1967). Also the energy 
dependence of yo(a,) was found to be similar to that shown in figures 2-5, except that the 
singularity occurred at a higher energy for a smaller hard core radius (and vice versa). 

The  value of I? calculated from the c(-a phase shifts is, of course, independent of the 
hard core radius chosen. Equation (5) can be written F = 2(d60/dE),r-1. However, for 
a hard core radius which differs from 1.7 fm by more than about 0-5 fm, the effect of the 
coefficient must be considered. This point is discussed by Kermode (1967) for the 
case of no hard core and no vacuum polarization. 

6. Conclusion 
Exsct calculations have shown that the effects of vacuum polarization on S-wave p-p 

scattering are of the same order of magnitude as the experimental errors. The  effective- 
range analysis for the proton case gives a slightly better fit when the effect is explicitly 
included. At low energies the phase shift due to the long-range vacuum polarization poten- 
tial is greater than that due to the short-range nuclear interaction. Hence the experimental 
‘nuclear’ phase shift 6, is negative at low energies. 

For the alpha case the energy dependence of ~ ~ ( 1 . 7 )  (equation (29)) differs considerably 
from that given by the short-range assumption (equation (2)). Nevertheless, the latter 
method gave the correct value of l? to within 0.10/,. There are two reasons for this. First, 
the error in each experimentally determined phase shift 6, is much larger than the vacuum 
polarization contribution. More accurate data would show that equation (2) is not valid. 
Secondly, the resonance energy E, is an important factor in the calculations. For a given 
resonance energy the width is related to barrier penetration. In  $ 2  the barrier was 
assumed to be pure Coulomb. In  § 5.2 the calculations also took into account the ad- 
ditional vacuum polarization barrier. The  vacuum polarization potential has the value 
5.8 kev (0.5yo of Coulomb potential) at 4.6 fm and the value 0.11 kev (0.1% of Coulomb 
potential) at the classical turning point. Hence the percentage increase in the height of the 
barrier due to vacuum polarization is approximately the same as the percentage decrease 
in the calculated value of F. 

If the vacuum polarization potential could be ‘switched-off’, both the resonance energy 
and the corresponding width would decrease. A decrease of 1 kev in E, would lead to a 
decrease of 0.6 ev in F. It would be an interesting academic exercise to calculate the 
resonance energy for this situation. 
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Appendix. Evaluation of the Schwinger integral 
tvriting 2tcr = x, we have 

where 

and 
F,(x) = x - ( 2 ~ )  -1 - ( 8x3) - (162)  - 5( 1 . 2 8 ~ ~ )  - 7(256x9)-' 

F2(x)  = {F,(x) - (2-  1)1'2} -+- . i: 2 t S  

The integrals involving F,(x) may be written in terms of exponential integrals, i.e. 

I ~ ( z )  = E,(z) -~E,(x)-~E,(x)-i~BEg(~)-~~~E11(~)-31~1113(~). 
E,(z) was calculated from the polynomial approximation (0 < x < 1) or the rational 
approximation (x > 1) (Abramowitz and Stegun 1965, p. 231). The  remaining exponential 
integrals were calculated from E,(z) by using the recurrence relations 

1 
n En+ 1(~) = {exp(-x) -~En(x ) ) -  (x < 5 ). 

The function F,(x) is very small for x 2 2. In  the region 1 < x < 2, F2(x)  was approxi- 
mated by the function 

C ai exp{- bi(x- 1)). 
n 

1.. 1 

The  coefficient bi was calculated from the root y i  = exp( - bih) of the equation 

= o  

where d, = F2{1 + (Y- l )h) ,  Y = 1, ..., 2n, and h was a chosen step length. 
efficients a,  (i = l ,  ..., n) were calculated from the simultaneous equations 

The  co- 

n 2 a,y,j-1 = d .  3'  

i = l  
If we take n = 5 ,  the coefficients 

a, = 0-000004 
a2 = 0.064663 
a, = 0-115 513 
a4 = 0.072421 

b, = 0 
b2 = 12,4374 
b ,  = 26.7971 
b4 = 65.9294 

a, = 0.116540 b, = 221.331 
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provided a good fit to F,(x). These coefficients were used to calculate 

Using dE,(x)/dx = -E,-l(x) and E,(x) = x - l  exp( -x), the calculation of dl(r)/dr was 
straightforward. 
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